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Abstract

It is well–known that in standard linear regression models with i.i.d. data and ho-

moskedasticity, adding ‘irrelevant regressors’ hurts (asymptotic) efficiency unless such

irrelevant regressors are orthogonal to the remaining ones. But under (conditional)

heteroskedasticity ‘irrelevant regressors’ can always be found such that the ordinary

least squares estimator in the long model is as efficient as the generalized least squares

estimator in the short model!
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1 Introduction

In standard introductory econometrics texts (see e.g. section 8.4.3 of Greene, 2000) it is explained

that with i.i.d. data and under the assumption of (conditional) homoskedasticity adding ‘irrelevant’

regressors (i.e. regressors whose regression coefficients are zero) reduces (asymptotic) efficiency

unless such additional regressors are orthogonal to those already present. It is not entirely surprising

that with (conditional) heteroskedasticity examples can be found such that the efficiency of the

ordinary least squares (OLS) estimator increases if irrelevant regressors are added. What we do

find surprising is that irrelevant regressors can always be found such that the OLS estimator in the

‘long’ model is as efficient as the GLS estimator in the ‘short’ model.1 Such additional regressors

depend on unknown population quantities. We show that any generalized least squares (GLS)

estimator, be it parametric or semiparametric (e.g. Delgado (1992) and Robinson (1987)) can be

interpreted as an OLS estimator in a model with additional regressors.

2 Main Results

Consider the linear regression model

yi = x′
iβ0 + ui, i = 1, . . . , n, (1)

where {(yi, xi)} is i.i.d., E[u1|x1] = 0 a.s., 0 < E[x1x
′
1] < ∞, and for some 0 < c < 1, c ≤

V (u1|x1) ≤ 1/c a.s.. It is well–known that the GLS estimator β̂G in (1) has asymptotic variance

equal to VG =
(
E[x1x

′
1/σ2

1]
)−1, where σ2

i = V [ui|xi].

Now consider the ‘long’ model

yi = x′
iβ0 + z′iθ0 + ui, i = 1, . . . , n, (2)

where zi = z(xi) for some function z.2 Suppose we estimate (2) using OLS yielding an estimator

β̂L of β0 with asymptotic variance VL. It is well–known that β̂L can be no more efficient than the
1For interesting mean square error comparisons between long and short regressions, see Magnus and Durbin (1999).
2Note that θ0 = 0, knowledge which is ignored in (2).
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GLS estimator of β0 in (2), which in turn is no more efficient than β̂G. Hence VG = VL implies

that all three of these estimators are equally efficient.

Theorem 1 If the OLS estimator of β0 in (1) has variance VO 6= VG then the function z can be

chosen such that VL = VG.

To get some intuition for the result stated in theorem 1, consider the case in which zi can be taken

to have the same dimension as xi. Then

yi = (xi − zi)′β0 + z′i(β0 + θ0) + u, = b′iβ0 + z′iδ0 + ui, i = 1, . . . , n, (3)

for bi = xi − zi and δ0 = β0 + θ0. If zi is chosen such that E[(xi − zi)z′i] = E[bi(xi − bi)′] = 0,

then by the Frisch–Waugh–Lovell theorem (Davidson and MacKinnon 2004, section 2.4) VL is

the asymptotic variance of the OLS estimator of β0 in a regression of yi on x̃i and zi, where

x̃i = xi − E[xiz
′
i]
(
E[ziz

′
i]
)−1

zi = xi − zi = bi, i.e. VL is the asymptotic variance of the OLS

estimator of β0 in (3). Hence

VL =
(
E[bib

′
i]
)−1

E[σ2
i bib

′
i]
(
E[bib

′
i]
)−1 =

(
E[bix

′
i]
)−1

E[σ2
i bib

′
i]
(
E[xib

′
i]
)−1

. (4)

The right–most variance matrix in (4) equals VG whenever bi = Cxi/σ2
i for any nonrandom invert-

ible matrix C.3 Note however that C = E[xix
′
i/σ2

i ]
(
E[xix

′
i/σ4

i ]
)−1 is the only choice that achieves

E[bi(xi− bi)′] = 0. So doing OLS in (2) with zi = xi−Cxi/σ2
i results in VL = VG; the only concern

is that this choice of zi can belong to a lower dimensional subspace a.s. (the zi vector could be

collinear), an issue which is addressed in the proof.

Now suppose that one wishes to implement this procedure. One estimates the conditional

variances σ2
i , puts the estimates in a diagonal matrix Σ̂ and creates the matrix Ẑ = [ẑ1, . . . , ẑn]′

where ẑi = ẑ(xi) and ẑ is like z but with all population quantities replaced with their sample

analogs. Let β̂FG denote the feasible GLS estimator in (1) and β̂FL denote the estimator of β0 in

(2) if zi is replaced with ẑi. Let further V̂O = (X ′X)−1(X ′Σ̂X)(X ′X)−1 and V̂G = (X ′Σ̂−1X)−1.
3There are in fact no choices for bi which differ from Cxi/σ2

i with positive probability.
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Theorem 2 If V̂O 6= V̂G then β̂FG = β̂FL.

Please note that theorem 2 does not require that the condition of theorem 1 is satisfied. In par-

ticular, even if σ2
i is constant a.s., the condition of theorem 2 may still be satisfied. Since the

probability that V̂O = V̂G is zero with most weighted least squares procedures, there is no need to

test for homoskedasticity ex ante.

In view of theorem 2, the practical usefulness of theorem 1 is limited. However, we believe

that most econometricians will find theorem 1 counterintuitive and the proofs of both theorems

instructive. Moreover, it follows from the proof of theorem 2 that the class of estimators that

involve adding regressors is larger than the class of weighted least squares estimators. So it is

plausible that estimators can be constructed that have the same limiting distribution as optimal

weighted least squares estimators and work better in practice. It is moreover likely that adding

regressors can be used to improve efficiency (possibly including second order efficiency) in more

general moment conditions models.
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Proof of theorem 1:

Drop the i–subscript throughout. Let b = Cx/σ2 with C = E[xx′/σ2]
(
E[xx′/σ4]

)−1 and write

T = E
[
(x− b)(x− b)′

]
= ADA′, where D is a diagonal matrix containing the positive eigenvalues

of T and A is an orthogonal matrix containing eigenvectors corresponding to D. 4

Then the solution is z = A′(x− b). To see this, note that E[b(x− b)′] = 0, E[zz′] = D > 0, and

define

x̃ = x− E[xz′]
(
E[zz′]

)−1
z = x− E

[
x(x− b)′

]
A

(
A′E

[
(x− b)(x− b)′

]
A

)−1
A′(x− b)

= x− TA(A′TA)−1A′(x− b) = b + (I −AA′)(x− b) = b a.s.,

since E
[
(I−AA′)(x−b)(x−b)′(I−AA′)

]
= 0. Then by the Frisch–Waugh–Lovell theorem (Davidson

and MacKinnon 2004, section 2.4), we have

VL =
(
E[x̃x̃′]

)−1
E[σ2x̃x̃′]

(
E[x̃x̃′]

)−1 = (C ′)−1
(
E[xx′/σ4]

)−1
E[xx′/σ2]

(
E[xx′/σ4]

)−1
C−1

=
(
E[xx′/σ2]

)−1
. �

Proof of theorem 2:

Let B̂ = Σ̂−1XĈ ′ with Ĉ = (X ′Σ̂−1X)(X ′Σ̂−2X)−1, let Â have orthonormal columns which contain

the eigenvectors corresponding to the positive eigenvalues of (X−B̂)′(X−B̂) and let Ẑ = (X−B̂)Â.5

Noting that (X − B̂)′B̂ = 0, if MẐ = I − PẐ = I − Ẑ(Ẑ ′Ẑ)−1Ẑ ′ then

PẐX = (X − B̂)Â
(
Â′(X − B̂)′(X − B̂)Â

)−1
Â′(X − B̂)′X

= (X − B̂)Â
(
Â′(X − B̂)′(X − B̂)Â

)−1
Â′(X − B̂)′(X − B̂) = (X − B̂)ÂÂ′ = X − B̂ a.s.,

by the definition of Â. But then

β̂FL = (X ′MẐX)−1X ′MẐy = (B̂′B̂)−1B̂′y = (Ĉ ′)−1(X ′Σ̂−2X)−1X ′Σ̂−1y

= (X ′Σ̂−1X)−1X ′Σ̂−1y. �

4T must have at least one positive eigenvalue, because otherwise x = Cx/σ2 a.s. and VO =(
E[xx′]

)−1
E[σ2xx′]

(
E[xx′]

)−1
=

(
CE[xx′/σ2]

)−1
CE[xx′/σ2]C′(E[xx′/σ2]C′)−1

= VG.
5Â exists, because if X = B̂, then V̂O = (X ′X)−1(X ′Σ̂X)(X ′X)−1 =

(Ĉ′X ′Σ̂−1X)−1Ĉ′X ′Σ̂−1XĈ(X ′Σ̂−1XĈ)−1 = V̂G.
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